VaMonoS
Unravelling the heterogoneity and function of monocytes in vaccination and immunity to malaria
- Duración
- 01/09/2023 - 31/08/2026
- Coordinador
- Gemma Moncunill
- Financiadores
- Ayuda PID2022-140479OB-I00
Malaria remains one of the major public health concerns worldwide. An effective vaccine against malaria is a global health priority to advance toward the elimination goals of this infectious disease. WHO recently recommended the RTS,S/AS01E malaria vaccine for African children for areas with high and medium malaria transmission. However, RTS,S has a moderate efficacy that needs to be improved. Understanding its mode of action and why a high proportion of vaccinated children are not protected will guide rational development of second-generation better vaccines. Whereas antibodies induced by RTS,S are associated with protection, the exact effector mechanisms have not been well defined.
Additionally, there is high heterogeneity in the antibody levels induced by the vaccine in African children and the factors and mechanisms associated with this heterogeneity are uncertain. There are also are vaccinated children who despite high antibody titers are not protected. Monocytes are crucial innate cells for early vaccine responses through inflammatory responses, antigen-presenting functions and interactions with T cells that shape the subsequent acquired response to the vaccine. This cell type is also important for antibody effector functions via binding to Fc receptors (FcR) through mechanisms such as antibodydependent phagocytosis. Therefore, particular monocyte subsets may impact vaccine outcomes. Our project aims to decipher the molecular, phenotypic and functional profiles of monocyte subsets associated with vaccine immunogenicity and induced protection.
In addition, malaria exposure is known to alter the composition and function of monocytes. Therefore, we also seek to elucidate the impact of malaria exposure on monocyte subsets associated with vaccine outcomes. To this end, we will use cryopreserved peripheral blood mononuclear cells and data collected in (i) an immunological study ancillary to the RTS,S pediatric phase 3 trial, before and after vaccination, and (ii) in a trial performed in malaria-naïve adults to optimize the dose and route of sporozoites injections in controlled human malaria infection studies. For sample selection, we will use exhaustive antibody and clinical data already gathered in the RTS,S immunology study to define high and low vaccine responders, protected and protected children and malaria-exposed and unexposed individuals. We will perform in-depth immune phenotyping of monocytes through spectral flow cytometry and single-cell RNA-Seq and subsequently in vitro assays to assess the function of the identified monocyte subsets.
This study will generate unprecedented knowledge on monocyte immunology, particularly in a vulnerable population. Expected results will shed light into the immunological and molecular basis of interindividual heterogeneity in the response to vaccines, particularly to RTS,S and one of the factors (malaria exposure) that may be behind monocytes heterogeneity. Identifying the immunological basis of this variability and unraveling the role of monocytes in vaccine responses and protection will allow the identification of targets, interventions and strategies to induce effective immune responses in all individuals and improve efficacy.
Total Funding
321.250 €
Nuestro equipo
Coordinator
-
Gemma Moncunill Assistant Research Professor
ISGlobal Team
-
Ruth Aguilar Staff Scientist
-
REBECA SANTANO Predoctoral Fellow
-
Carla Morales Ferré Investigadora postdoctoral
-
Dídac Macià Investigador postdoctoral
-
Luis Molinos Senior Postdoctoral Researcher
-
Diana Barrios Técnico de Soporte Científico - Laboratorio
Otros proyectos
Ver proyectos pasadosNHEPACHA
Nuevas Herramientas para el Diagnóstico y la Evaluación del Paciente con Enfermedad de Chagas
Estudio inmunológico de la vacuna RTS,S
Estudio de correlatos de protección frente a la malaria después de la vacunación con RTS,S/AS01E: Una evaluación inmunológica exhaustiva en el ensayo clínico de Fase III, doble ciego, aleatorizado, multicéntrico con un grupo control
Euroleish.net
Control of Leishmaniasis. From bench to bedside and community
GREPIMER
Grup de recerca en patología importada i malaties emergents i re-emergents
TESEO
Nuevos regímenes de quimioterapia y biomarcadores para la enfermedad de Chagas
ASINTMAL
Unravelling Disease Tolerance and Host Resistance in Afebrile 'P. falciparum' Infections: a Prospective Study in Mozambican Adults
ADAM
Administración masiva y focal de fármacos antimaláricos para avanzar hacia la eliminación de la malaria en Mozambique: acelerando la implementación de programas y políticas
MULTIPLY
MULTIple doses of IPTi Proposal: a Lifesaving high Yield intervention
Science4Pandemics
Citizens engagement digital platform for collective intelligence in pandemics
HIDDENVIVAX
Novel organ-on-a-chip technology to study extracellular vesicles-mediated cryptic infections in Plasmodium vivax malaria
Subclinical Infections in Children and Long Term Health Effects
Infection acquisition in early life and health outcomes in childhood - MARATO TV3
Herramienta innovadora de detección de enfermedades y vacunación a población inmigrante en riesgo en España
Project Code: PI21/00651
Impacto de las coinfecciones en el balance de respuestas de anticuerpos y linfocitos T helper a antígenos diana de inmunidad natural y vacunal frente a patógenos humanos prominentes
Project Code: PI20/00866
EpiGen
Building Scalable Pathogen Genomic Epidemiology in Ethiopia
MalTransc
Transcriptional regulation of adaptation and developmental decisions in malaria parasites: from epigenetic variation to directed transcriptional responses
BOHEMIA
Broad One Health Endectocide-based Malaria Intervention in Africa
RESPONSE
Mechanisms of the transcriptional responses to changes in the environment in the malaria parasite Plasmodium falciparum
VivaxEVTalk
Extracellular Vesicles as Intercellular Communicators and Biomarkers of Cryptic Erythrocytic Infections in Plasmodium vivax malaria
CLIMSOCTRYPBOL
Insight on climate and social participatory research for integral management of vectorborne zoonosis caused by Trypanosoma cruzi and Leishmania spp. in the Bolivian Gran Chaco.
SexMal
Social affairs and sex in P. falciparum: implications for malaria elimination
MENA Migrant Health
Transforming data collection and surveillance to drive migrant health research, care and policy
MESA
La Alianza Científica para la Erradicación de la Malaria (MESA) tiene como objetivo avanzar en la ciencia de la erradicación de la malaria.
GenMoz
P. falciparum genomic intelligence in Mozambique
SMART
Identifying Severe Malaria with a new Aptamer-based Rapid diagnostic Test